Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Plant Biol (Stuttg) ; 25(3): 468-477, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36652268

RESUMO

In several montane forests around the world, epiphytes coexist in mats, sharing the rhizosphere and forming histosol-type soils rich in nutrients. The role of these epiphytes in the formation of canopy soil and the fitness costs that epiphytes face when cohabiting in these mats are unknown. In a lower montane cloud forest in central Veracruz, Mexico, a 2-year factorial experiment was carried out with the presence/absence of ramets of Phlebodium areolatum (Polypodiaceae), Tillandsia kirchhoffiana, T. multicaulis and T. punctulata (Bromeliaceae). We examined (i) which epiphyte species contribute to the formation of canopy soil, (ii) the role of epiphyte composition in the soil nutrient composition, and (iii) the fitness costs faced by epiphytes when cohabiting. Canopy soil formation highest when P. areolatum is present. Soil nutrient content does not change with epiphyte composition, is influenced by the microbiota, and P content decreases with the presence of epiphytes. The fitness costs show that the species compete, decreasing their survival and growth, but the competitive capacity differs between the species. We conclude that P. areolatum is an ecosystem engineer that promotes the creation of canopy soil but is a poor competitor. The results coincide with the model of succession by facilitation. Canopy soil is a slow-created component whose nutrient content does not depend on the epiphytic flora. In epiphyte mats, the dominant interactions are competitive, but there is also facilitation.


Assuntos
Ecossistema , Solo , Árvores , México , Florestas
2.
Plant Biol (Stuttg) ; 23(6): 1037-1043, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34516716

RESUMO

Host plant selection by herbivores is driven by a complex array of cues, including leaf traits and previous leaf damage. Herbivore-associated cues to host selection at the plant and leaf scale aid understanding of mechanisms responsible for host preference that might translate into increased performance, as well as processes structuring herbivore populations mediated by interactions. We investigated how changes induced by a galling insect in the tropical fern Cyathea phalerata act as repellent or attractant cues for sawfly feeding and the effects of leaf size on herbivory levels. We recorded gall abundance, damage by chewers, leaf size, plant nutritional quality, phenolic concentration and leaf anatomical traits between galled and non-galled leaf samples. Galled samples contained less N, higher levels of phenolics and higher C/N ratio. However, leaf-chewing damage did not differ between galled and non-galled leaves. The gall structure was avoided by chewers, as it had high concentrations of phenolics, lignification and suberization. Larger leaves sustained higher gall abundance, but leaf size did not have a significant effect on chewer damage. A co-occurrence index calculated for both guilds indicated that galls and chewers exhibited a distribution that did not differ from random, reinforcing that the two guilds on C. phalerata do not show patterns of repulsion such as those maintained by interspecific competition. Sawflies dismissing chemical cues indicate that the increase in phenolics caused by galling insects does not generate increased protection of the galled pinnules. Our results highlight ferns as key resources for herbivores and as a potential plant group to study new research avenues on plant-insect interactions.


Assuntos
Gleiquênias , Animais , Herbivoria , Insetos , Fenótipo , Folhas de Planta
3.
Plant Biol (Stuttg) ; 22(3): 541-552, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31834980

RESUMO

Canopy soil (CS) volume reflect epiphyte community maturity, but little is known about the factors that retain CS or species succession within it. Humus fern species (e.g. Phlebodium areolatum) appear capable of retaining CS. In ten Quercus spp. we sampled 987 epiphyte mats to examine the role of the common epiphyte species and crown traits determining CS volume, in order to infer successional stages and identify pioneer and late successional species. Branch traits (height, diameter and slope), CS volume and cover of the epiphyte species were determined for each mat. Nutrient content was determined in CS random samples of 12 epiphyte associations and sizes (one sample from each size quintile). A total of 60% of the mats lack CS. Cover of P. areolatum was the main variable explaining CS volume, and this species was present in 46.8% of those with CS. Epiphyte composition was highly variable, but pioneer (species appearing in monospecific mats, without CS) and late successional species could be identified. Canopy soil nutrient content was similar among the associations of epiphytes. Magnesium, Ca and pH decreased with CS volume, while P and N increased. Phlebodium areolatum is associated with high CS volumes and could act as a key species in its retention. Monospecific mats of pioneer species lack CS or have low volumes, while CS is much higher in mats with late successional species, but the mechanisms of CS formation and nutrient retention in response to interactions between epiphyte species remain to be tested.


Assuntos
Gleiquênias , Nutrientes , Quercus , Solo , Gleiquênias/fisiologia , Nutrientes/metabolismo , Quercus/metabolismo , Solo/química , Árvores
4.
Braz. j. biol ; 79(3): 495-504, July-Sept. 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1001457

RESUMO

Abstract Forest edges typically exhibit higher luminosity and lower humidity than the forest interior, resulting in an abiotic gradient. However, the degree of abiotic difference can be affected from the type of the matrix, influencing the selection of species. We compared the floristic and phytosociological structure of understory communities of ferns and lycophytes of the edge and interior of three forest sites influenced by different types of surrounding matrices (natural field, Pinus plantation, and cultivation of crops). In the region of Araucaria Forest, in Rio Grande do Sul, Brazil, twelve 10 × 10 m plots were selected at the edge and interior of each site, totaling 72 plots and to evaluate the phytosociological contrast, using as a parameter coverage and species richness per plot to evaluate this contrast. We recorded a total of 38 species in the studied areas, distributed in 15 families. The results show that the edge effect acts at different intensities in the analyzed sites. In the site with unnatural matrix, the composition was more homogeneous both in the edges and in the interiors and presented lower richness, showing a more pronounced and deep impact. Already in the site with natural matrix surroundings, although the border also presents low richness, the interior was about 3x richer. Based on our results, we concluded that fern conservation efforts should focus on fragments of Araucaria Forest inserted in the natural field, because the conversion of natural field into Pinus planting and cultivation of crops decreases ferns species both in the edges and forest interiors of the studied fragments, besides altering the phytosociological structure leading the communities to simplification.


Resumo Bordas florestais tipicamente exibem maior luminosidade e menor umidade que o interior florestal, resultando em um gradiente abiótico. Entretanto, o grau de diferença abiótica pode ser afetado a partir do tipo da matriz, influenciando a seleção de espécies. Comparamos a composição florística e a estrutura fitossociológica das comunidades de samambaias e licófitas na borda e interior de três sítios influenciados por diferentes matrizes (campo natural, plantio de Pinus e cultivo de olerícolas). Na região de Floresta com Araucária no Rio Grande do Sul, Brasil, foram sorteadas doze parcelas de 10 × 10 m na borda e no interior de cada sítio, totalizando 72 parcelas para avaliar o contraste fitossociológico, utilizando como parâmetro cobertura e riqueza das espécies por parcela para avaliar esse contraste. Registramos um total de 38 espécies nas áreas estudadas, distribuídas em 15 famílias. Os resultados mostraram que o efeito de borda atua em intensidades distintas nos sítios analisados. Nos sítios com matriz antropizada, a composição foi mais homogênea tanto nas bordas, quanto nos interiores e apresentou menor riqueza, demonstrando impacto mais pronunciado e profundo. Já no sítio com matriz de entorno natural, apesar da borda também apresentar baixa riqueza, o interior foi cerca de 3x mais rico. Sugerimos que os esforços de conservação de samambaias e licófitas em fragmentos com araucária, devem se concentrar em sítios inseridos em campo natural, pois, a conversão destes em plantio de Pinus e cultivo de olerícolas, diminui a diversidade dessas plantas, tanto nas bordas quanto nos interiores da floresta, além de alterar a estrutura fitossociológica levando as comunidades à simplificação.


Assuntos
Florestas , Gleiquênias , Lycopodiaceae , Biota , Brasil
5.
Braz J Biol ; 79(3): 495-504, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30304255

RESUMO

Forest edges typically exhibit higher luminosity and lower humidity than the forest interior, resulting in an abiotic gradient. However, the degree of abiotic difference can be affected from the type of the matrix, influencing the selection of species. We compared the floristic and phytosociological structure of understory communities of ferns and lycophytes of the edge and interior of three forest sites influenced by different types of surrounding matrices (natural field, Pinus plantation, and cultivation of crops). In the region of Araucaria Forest, in Rio Grande do Sul, Brazil, twelve 10 × 10 m plots were selected at the edge and interior of each site, totaling 72 plots and to evaluate the phytosociological contrast, using as a parameter coverage and species richness per plot to evaluate this contrast. We recorded a total of 38 species in the studied areas, distributed in 15 families. The results show that the edge effect acts at different intensities in the analyzed sites. In the site with unnatural matrix, the composition was more homogeneous both in the edges and in the interiors and presented lower richness, showing a more pronounced and deep impact. Already in the site with natural matrix surroundings, although the border also presents low richness, the interior was about 3x richer. Based on our results, we concluded that fern conservation efforts should focus on fragments of Araucaria Forest inserted in the natural field, because the conversion of natural field into Pinus planting and cultivation of crops decreases ferns species both in the edges and forest interiors of the studied fragments, besides altering the phytosociological structure leading the communities to simplification.


Assuntos
Biota , Gleiquênias , Florestas , Lycopodiaceae , Brasil
8.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1467210

RESUMO

Abstract Forest edges typically exhibit higher luminosity and lower humidity than the forest interior, resulting in an abiotic gradient. However, the degree of abiotic difference can be affected from the type of the matrix, influencing the selection of species. We compared the floristic and phytosociological structure of understory communities of ferns and lycophytes of the edge and interior of three forest sites influenced by different types of surrounding matrices (natural field, Pinus plantation, and cultivation of crops). In the region of Araucaria Forest, in Rio Grande do Sul, Brazil, twelve 10 × 10 m plots were selected at the edge and interior of each site, totaling 72 plots and to evaluate the phytosociological contrast, using as a parameter coverage and species richness per plot to evaluate this contrast. We recorded a total of 38 species in the studied areas, distributed in 15 families. The results show that the edge effect acts at different intensities in the analyzed sites. In the site with unnatural matrix, the composition was more homogeneous both in the edges and in the interiors and presented lower richness, showing a more pronounced and deep impact. Already in the site with natural matrix surroundings, although the border also presents low richness, the interior was about 3x richer. Based on our results, we concluded that fern conservation efforts should focus on fragments of Araucaria Forest inserted in the natural field, because the conversion of natural field into Pinus planting and cultivation of crops decreases ferns species both in the edges and forest interiors of the studied fragments, besides altering the phytosociological structure leading the communities to simplification.


Resumo Bordas florestais tipicamente exibem maior luminosidade e menor umidade que o interior florestal, resultando em um gradiente abiótico. Entretanto, o grau de diferença abiótica pode ser afetado a partir do tipo da matriz, influenciando a seleção de espécies. Comparamos a composição florística e a estrutura fitossociológica das comunidades de samambaias e licófitas na borda e interior de três sítios influenciados por diferentes matrizes (campo natural, plantio de Pinus e cultivo de olerícolas). Na região de Floresta com Araucária no Rio Grande do Sul, Brasil, foram sorteadas doze parcelas de 10 × 10 m na borda e no interior de cada sítio, totalizando 72 parcelas para avaliar o contraste fitossociológico, utilizando como parâmetro cobertura e riqueza das espécies por parcela para avaliar esse contraste. Registramos um total de 38 espécies nas áreas estudadas, distribuídas em 15 famílias. Os resultados mostraram que o efeito de borda atua em intensidades distintas nos sítios analisados. Nos sítios com matriz antropizada, a composição foi mais homogênea tanto nas bordas, quanto nos interiores e apresentou menor riqueza, demonstrando impacto mais pronunciado e profundo. Já no sítio com matriz de entorno natural, apesar da borda também apresentar baixa riqueza, o interior foi cerca de 3x mais rico. Sugerimos que os esforços de conservação de samambaias e licófitas em fragmentos com araucária, devem se concentrar em sítios inseridos em campo natural, pois, a conversão destes em plantio de Pinus e cultivo de olerícolas, diminui a diversidade dessas plantas, tanto nas bordas quanto nos interiores da floresta, além de alterar a estrutura fitossociológica levando as comunidades à simplificação.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA